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Attending Meetings: The Use of Mixed Strategies’

Wilfried PAUWELS — Daniel DUJAVA*

Abstract

We consider a game in which each of n playersv#dd to a meeting, and
has to decide whether or not to attend the meefinguorum has to be attained
if the meeting is to have the power of making Inigdiecisions. We consider all
possible preferences of the players. These prefeseare assumed to be the
same for all players. Restricting ourselves to sgtnim Nash equilibria, we
identify three different classes of preferencesalfiirst class the game has
a unique Nash equilibrium, defined in mixed straegin a second class the
game has two Nash equilibria, defined in pure siyas. In a final class of pref-
erences the game has a Nash equilibrium in pusdegres, and possibly also in
mixed strategies. If there is a mixed strategy Neglilibrium, we show that the
equilibrium probability of attending the meetingcieases when the quorum
increases. Furthermore, if the number of playersdbees very large, this equi-
librium probability tends to the value of the quoruFinally, we show how the
underlying game structure can also be used in odpglications.
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Introduction

Suppose you are invited to a meeting the agenddich does not particular-
ly interest you. Your decision to attend or noattend the meeting may then be
rather difficult. On the one hand, you may not wiantose your time preparing
and attending a meeting in which you are not irstiexee But on the other hand,
by not attending the meeting you may disappointd@rman of the meeting.
She may show you her disapproval, or she may ewenygu a warning. More-
over, if a meeting can only make binding decisiifres quorum is attained, you
may feel guilty when, because of your absence,gh®um was not attained.
The upshot of all these considerations could beyiia decide to follow a mixed
strategy, assigning positive probabilities to tlutians ,attending” and ,not
attending“ the meeting.

In this paper we formalize the above situatioraagame, and we study the
use of mixed strategies in this game. In particwer want to know which types
of preferences give rise to an equilibrium mixe@tsgy. Furthermore, we want
to analyze how the equilibrium mixed strategy dejseon the exact value of the
guorum and on the number of members of the meeting.

The main results of the paper are as follows.tFive identify three classes
of preferences, each class having its own typegaflierium. For preferences
belonging to afirst class, the game has a unigashNequilibrium, defined
in mixed strategies. For preferences belonging $ec@nd class, there are two
Nash equilibria, defined in pure strategies. Finaith a third class of prefer-
ences, there always exists a Nash equilibrium ire girategies, and possibly
also a Nash equilibrium in mixed strategies. Sebgnde show that, in all
classes of preferences with a mixed strategy Nasiflilerium, an increase of
the quorum always leads to an increase in the ibquin probability of atten-
ding the meeting. Furthermore, if the number ofypta becomes very large,
then — for all preferences of the first class — dggiilibrium probability of
attending the meeting converges to the quorum,emged as a fraction of the
number of players. Finally, we show that thereiateresting game situations,
different from our ,meeting game*, that can be gmad using the underlying
game structure of our model. One example referthéowell-known game in
which players witness a crime and can report theopolice (see, e.g., Osborne,
2004). Other examples are the public good gamel/zeth by Palfrey and
Rosenthal (1983).

The paper is structured as follows. In a firstisecwe present the model. In
a second section we derive and analyze equilibmoirted strategies. A final
section concludes. In an Appendix we prove someenechnical results, used
in section 2.
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The model

We consider the following normal form game. Thaygks of the game are
the members of a board who are invited to a meeWgdenote the set of play-
ers by N ={1, 2, ...,n}. The quorum of the meeting is denotedony meaning

that at leasttn members have to attend if the meeting is to haeepbwer to
make binding decisions: is a fraction which can be written @s= x/n, with
x=1, 2, ..,n.Clearly,Jn < a < 1

Each player in the game has two possible actsims: can attend or not attend
the meeting. These two actions are denoted\land NA. A mixed strategy is
defined by a probability, pD[O, ]] assigned to the actioh. The probability

that the actionNA is chosen isl—- p. We define a strictly mixed strategy as
a mixed strategy with pD(O, ]) Note that the chairman of a meeting is not

a player of the game. As shasto attend the meeting, she cannot choose be-
tween the actiond andNA

An individual playeri [JN, taking the actions chosen by the other players as
given, can find herself in three different regim&egime | applies when the
number of players, different from player i, havidecided to attend the meeting
is smaller thanan — 1. In this regime the meeting will never attainqgtsorum,
even when player i decides to attend. Clearlyhaextreme case when= In,

regime | cannot occur. In this case, even if al dthern — 1 players decide not
to attend, the quorum is attained if the playeraneeconsidering decides to attend.
Regime Il applies when exactlyn — 1 of the players, different from player
have decided to attend. In this case playsrdecisive, meaning that the quorum
is attained if and only if playerdecides to attend. Finally, in regime lll, at feas
an players, different from playdr have decided to attend the meeting. In this
regime the quorum is attained, even when playdgcides not to attend. In the
extreme case wheo =1, regime lll cannot occur. In this case, even Ifthé
other n — 1 players decide to attend, the quorum is not athifthe player we
are considering decides not to attend.

We assume all the players have the same preferenoethat the game is
symmetric. A player's payoffs, given in terms ofrBaulli utility numbers’ de-
pend on the action that player has chosen, anth@mdtions chosen by all the
other players. These latter actions are given by¢igime that applies. The nota-
tion used to indicate the payoffs of an individpklyer is given in the following
scheme. When a player decides to attend the mediingayoffs in each of the
three regimes are denoted &y a, anda,;. When she decides not to attend the

2 We are using the terminology introduced by Mas-{;dléhinston and Green (1995), 184.
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meeting, these payoffs are denotedipyn, andny. As we noted before, in the
extreme cases whem = ¥n or a =1regime | or regime Il does not occur.

Regime | Regime Il Regime IlI
A ] q a
NA n n, Ny

At this point of the analysis, we do not imposg esstrictions on these pay-
-offs. In fact, each of these utility numbers candiven by any real number. In
the next section we will derive restrictions onghgayoffs which are necessary
and/or sufficient for the existence and/or unigqwsnef an equilibrium mixed
strategy.

Equilibrium Mixed Strategies

We now study symmetric mixed strategy Nash equelibf the game defined
in the previous section. We will first determine ttypes of preferences leading
to mixed strategy Nash equilibria. We then exantioe the parameteksandn
affect the precise value of the equilibrium mix¢itegy.

Consider an individual playerlJN, and assume that all the other players
choose the same mixed strategy givempbyhe number of these players actually

attending the meeting is then a random variablé wibinomial distribution. If
we assume thal/n<a <1, so that the regimes |, Il and Il occur with pivs

probabilities, these probabilities are given by

()= 3" e W

k=0

M(p)z(an—l

n-1 J pan—l (1_ p)(n—l)—(an—l) 2)

SCERTERVEE 3 W I ®

k=an

Clearly, if @ =1/n, regime | cannot occur, and the above probalslgienpli-
fyto L(p)=0,M(p)=(1-p)"" andR(p)=1-(1- p)"". Similarly, if a =1,
regime lll cannot occur, and the above probabdigenplify to L(p) =1-p"*,

M (p)=p"* and R( p)=0. We will analyze these two extreme cases later on.
For the moment we assume tHAb< a <1, so that the probabilities (1), (2) and
(3) apply.
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The expected payoff of a player choosing achpwhen all the other players
choose a mixed strategyis given by

aLl(p)+raM(p+a R 1
If a player chooses actid’, her expected payoff is
nL(p)+nM(p+n R 9

If we want a player to choose a mixed strategy,regulire that these two
expected payoffs be equal:

aL(p)+aM(p+a K p=nlk p+ n M p+,n R

This is an application of the indifference prireiisee, e.g., Maschler, Solan
and Zamir, 2013, p. 160). To simplify the notatiave define the numbers
d=9-n,d,=8 —-n andd, =g, — 1), , giving the difference in payoffs
obtained from the actiolsandNA, in each of the three regimes. We now define
a functiong(p) as

¢(p)=d L(p)+d M(P+d R P 4)
We want to find the valueg*0(0, 1) such that
#(p*)=0 (5)

Such a value gb* is a symmetric, strictly mixed strategy Nash afquihm.
Moreover, if at the vaIuep*D(O, 1) the functiong cuts the horizontap-axis
from above, the mixed strategy Nash equilibripinis locally stable. The moti-
vation for this stability property is as followd, at a mixed strategp, close to
a valuep* whereg¢(p*)=0, ¢(p) is negative, the expected payoff of choosing
NA exceeds the expected payoff of choosti@nd the decision maker may be
assumed to decrease the valug.oBimilarly, if ¢(p) is positive, the decision
maker may be assumed to increase the valye Ibthen the functiorp cuts the
horizontal p-axis atp* from above, these adjustments will ultimately l¢bd
decision maker to the valyeg whereg(p*)=0.

Clearly, the game can also have Nash equilibripure strategies, at values
p=0or p=1.If p=0, all the other players have chosen the adiiénlf then

¢(0) <0, the best reply by an individual player is alsahmosaNA. Hence, the

combination of actionsNA, NA, ..., NA) is a locally stable pure strategy Nash
equilibrium. Similarly, if¢(1) >0, the combinationA4, A, ...,A) is also a locally

stable pure strategy Nash equilibrium.
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We now identify the conditions guaranteeing thaehlae p* D(O, 1) with proper-

ty (5) exists, and that this value is unique arablst As we analyze the case
when« satisfiesl/n<a <1, the probabilities (1), (2) and (3) apply. As hist

caseL(0)=1, M (0)=0, R(0)=0, L(1)=0, M(1)=0 and R(1) =1, we have

#(0)=d, (6)
¢(1) = dIII
Hence, the functio starts at the valug(0)=d, and ends at the value

¢(1) = dIII '
We now determine the general behaviour of thetfana over the interval
(0, 1) Is this function monotonically increasing or degsing over this interval,

or does it attain critical points in this intervahhd what can we say about the
number of these critical points, and about the neadfi these critical points (maxi-
ma or minima)? In the Appendix, section 1, we prthet the general behaviour
of the functiony is fully determined by the relative sizes of thi#edencesd,, d,
anddy,. In particular, for each of the following six semeces of inequalities, the
functiong shows the indicated behaviour:

d, <d, <d, :¢is monotonically increasing ovén, 1)

d, <d, <dg : ¢is monotonically decreasing ov€®, 1)

d <d, <d or d, <d <d: ¢ has a unique critical poimt, 0(0, 1),
which is a maximum

d, <d <d, or d, <d, <d: ¢ has a unique critical poimt, 0(0, 1),
which is a minimum

Moreover, the valup, at which the functio has a critical point is given by
(dl _dm )_(ql B ql )
n-1
d-d,)-———(d -
( I |||) a'n—l(q' ql )

P = (7)

For each of the above six sequences of inequaiiteecan fix the signs of the
differencedd,, d, andd,,. For example, for the first sequende<d, <d, we can
consider the possibilite®<d, <d, <d, , d <0<d, <, , d <d, <0<d,
and d, <d, <d, <0. We call such a signed sequence of inequalitipseter-
ence profile For each such preference profile we can now easitermine the
nature of the Nash equilibrium (equilibria), if tkeexists one. We start with
the following simple cases. If all the differena#isd, andd,, are negative,
then clearly the combination of actiondA, NA, ..., NA) is the unique pure
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strategy Nash equilibrium. Similarly, when all ttiéferencesd,, d,, andd,, are
positive, the combinationA( A, ...,A) is the unique pure strategy Nash equilib-
rium. More generally, as already noted, wheneﬁ@(ﬂ) =d, <0, the combina-

tion of actions KA, NA, ... NA) is a pure strategy Nash equilibrium, and when-
ever ¢(1)=d, >0, the combinationA, A, ..., A) is also a pure strategy Nash
equilibrium.

We now group all the other possible preferencdilpsinto three main
classes. Afirst class of preference profilesoncerns preferences for which
there always exists a stable, strictly mixed sgatdash equilibrium which, in
addition, is the unique Nash equilibrium of the gafmhese are the preference
profiles

d, <d, <0<d (8)
d, <d <0<d ©9)
d, <0<d, <d (10)
d, <0<d <q (11)

The common characteristic of all these profileghatd, <0<d . Given

these inequalities, the preference profiles in {8(11) consider all possible
locations ofdy;, relative tod,, andd,. In these preference profiles players basi-
cally dislike meetings. In particular, in regime, Nvhen the attainment of the
guorum is guaranteed, players do not want to atteadneetingdy, is always
negative. At the same time, in regimed|,is always positive, meaning that
players prefer to attend the meeting even whendahaice does not allow the
qguorum to be attained. This last characteristic nwk strange for players
who dislike meetings.

However, three possible interpretations are devi@l. First, a meeting which
does not attain its quorum can be very humiliattmgl embarrassing for the
chairman, and players may want to alleviate thératem's discomfort by attend-
ing the meeting. This would then also requdjeto be positive. Secondly, play-
ers who dislike meetings still may want to attencheeting in regime | only to
witness and to enjoy (with malicious pleasure)¢hairman's discomfort in that
regime. This would be consistent with a negativeiaf d,. Finally, the ine-
qualitiesd,, <0<d may also characterize players who, for socialaesslike

to be seen in the meeting, pretending they arearaed, but who are in fact
unwilling to take any responsibility of the outcomEhis may be a possible
interpretation of the profiles (8) and (10).
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Source:Own calculation.

The exact behaviour of the functignin the four preference profiles (8) —
(11) is as follows. As in all these profile, <0<d , the functiony starts at
a positive valual,, and ends at a negative valig. In the case of (8) it attains
a minimum in the interva(O, 1) This is illustrated in Figure 1.a. In the cases

(9) and (10) the functiop monotonically decreases frodn to d,;. Figure 1.b
illustrates (9), and Figure 1.c illustrates (10hdHy, in case (11), illustrated in
Figure 1.d, the functiop attains a maximum in the inter{@, 1). In all these

cases there exists a unique, stable, strictly mstedegy Nash equilibriurh.
A second class of preferenpeofiles concerns preferences for which all sta-
ble Nash equilibria are pure strategy equilibrine3e are profiles of the type

dII < d| < 0< c1II (12)
dI < dII < 0< c1II (13)
dI < O< d” < qll (14)

d <0<d, <4q (15)
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In all these preference profiles the inequalitiesx0<d, hold. Given these

inequalities, the preference profiles in (12) -)(d&fer only in the exact location
of dy. In these profiles all possible locationsdyf relative tod, anddy,, are
allowed. In all the profiled, <0<d, players can be said to be ,serious": in

regime | they do not want to lose their time byeatling the meeting, while in

regime lll, when real decisions are being takeay tlvant to be present. The sign
of d, reveals whether a player prefers a meeting whitging the quorum and

where she is present, or a meeting which doesttaohdahe quorum and where
she is not present. In cases (14) and (15) theeplay,concerned“ and prefers
the first alternative. She would have guilt feetinfyshe would not attend. No

such guilt feelings exist in cases (12) and (13).

In all four cases of (12) — (15) there exists astable mixed strategy Nash
equilibrium, where the functiop cuts thep-axis from below. At the same time,
the combinationsA, A, ...,A) and NA, NA, ...,NA) are always stable pure strat-
egy Nash equilibria. In the cases (13) and (14)ftimetion ¢ monotonically
increases frond, to dy;. In case (15) the functiop attains a maximum at the
value p,0(0, 1), while in case (12) it attains a minimumpgd(0, 1).

Finally, a third class of preference profile®ncerns preferences where there
is always a stable pure strategy Nash equilibrivoreover, it is also possible
that there exists a stable mixed strategy Nashibqum. These are the prefer-
ence profiles of the type

d <d, <0<q (16)
d, <d <0<q (17)
d, <0<d <4, (18)
d, <0<d, <d (19)

In all these preference profilels anddy, always have the same sign. In the
cases (16) and (17) this sign is negative, meatfing players strongly dislike
meetings. At the same time, they have strong dedlings in regime Il: if the
qguorum is not attained and if they are decisiveytivould feel very guilty if
they would not attend. In these two preferenceil@ofthe functiony attains
a maximum at the valug, 0(0, 1). If the valued, is sufficiently large, and if

the probability that regime Il applies is also suiéntly large, the maximum

3 The values ofd;,d,;,d;;) in each of the Figures 1a, 1b, 1c and 1d arengiye(0.5, —2, —0.5),
(0.5, -0.25, -0.5), (0.5, 0.25, —-0.5) and (0.5+@5). On the solid curves= 16/20, and on the
dashed curveg = 17/20. In all the figures = 20.
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value ¢(p,) will be positive, so that there exist two valudspoat which
¢(p)=0. These are two mixed strategy Nash equilibria, dnly the higher

value ofp is a stable Nash equilibrium. Moreover, the corabon of actions
(NA, NA, ...,NA) is also a pure strategy Nash equilibrium. Thexses are illus-
trated in Figures 2a and 2b.

Figure 2a Figure 2b
1.0 1.0
0.5} 0.5
4""\-\\\ /';-'\-\\‘
02 04 6,708 \4L.0 02 04 0677 08\} 1.0
0.5 ’ —0.5f %
-1.0 —1.0t

Source:Own calculation.

In the cases (18) and (19) balhandd,, are positive, andl, is negative.
These preferences look rather eccentric: playerfepto attend in regimes | and
lll, but in regime Il they prefer to boycott the etmg. For this reason we will
not discuss these cases any further in the comtexiur meeting game. The
mathematical properties of these cases are, howeasy to derive. The function
¢ attains a minimum at the valug, 0(0, 1) . If the valueg(p,) <0, there exist
two mixed strategy Nash equilibria, but only thevés value ofp is a stable
Nash equilibrium. Moreover, the combination of an @A, A,..., A) is also
a pure strategy Nash equilibrium.

We still have to consider the possible extremeieslofa, viz. @ =2/n and

a=1. In casea =1/n regime | cannot occur, ant(p)=0, M (p)=(1-p)""
andR( p)=1-(1- p)"". It follows that

#(p)=[d, - d,]1- P "+ ¢ (20)

We now haveg(0)=d, and ¢(1)=d,, . This game has a unique, stable,
strictly mixed strategy Nash equilibrium if and pril d,, <0<d, . It is given
by

4 The values ofd], dy, dy) in each of the Figures 2a and 2b are given by5(-B —0.25) and
(-0.25, 2,-0.5). On the solid curvess 16/20, and on the dashed curwes 17/20. In both cases
n=20.
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p* :l — |: d _c_jlnd :|n—1 (21)

In the context of the game in which players havedcide whether or not to
attend a meeting, the case where1/n looks very special. However, there is
another well known game with exactly this structunethis gamen players ob-
serve a crime, and each player wants the polidceetmformed, but prefers that
someone else make the phone call (see Osborne, 200431 — 134), and the
many references given there. Each player has ttonacC = Call, andNC =
Not Call. Payoffs can be described by the followsaheme:

Regime II Regime llI
C v—C v—C
NC 0 )

v is the utility each player enjoys when the polgénformed, and is the cost
of making a phone call. It is natural to assume thac>0. Clearly, in this
example the conditiond,, <0<d, is satisfied, and

1

p* =1—(5j”‘1 (22)
U

is the unique, stable, strictly mixed strategy Negtilibrium.
Finally, we consider the other extreme casel, in which all players have
to attend in order to attain the quorum. Hérep) =1- p"*, M (p)= p"™ and

R( p)=0, so that
¢(p):(dn _q) Ff_l"' q (23)

We now haveg(0)=d, and ¢(1)=d, . There now exists a stable, strictly
mixed strategy Nash equilibrium if and onlydf >0> d, . In the context of our
game such preferences are unreasonable. In the mpasenable case where
d, >0>d , the mixed strategy Nash equilibrium is unstafilee only stable
Nash equilibria in this case are the pure stratamggbinations A, A, ...,A) and
(NA NA, ...,NA).

Let us now return to the case whéfa<a <1. In each of the profiles (8) —

(11), and possibly also in the profiles (16) and)(the game has a stable, strictly
mixed strategy Nash equilibrium. We now examine lowach of these six pro-
files the equilibrium mixed strategy changes if thwrumo increases. In the case
of preference profiles (16) and (17) we first nitte following rather unexpected



587

property. As we noted before, and as is clear fFogures 2a and 2b, a mixed
strategy Nash equilibrium only exists if the maximalue ¢( pe) exceeds zero.

If this is not the case, no mixed strategy Nashilibgum exists. In the Appen-

dix, section 2, we prove that, in case the prefgenofiles (16) and (17) satisfy
d, =d, <0< , this maximal valugp(p,) is decreasing i for 0<a <32,

and increasing i for (]/2) <a <1 It then may happen that this maximal value

exceeds zero for low and for high valueszpfand that it does not exceed zero
for intermediate values of Such a case is illustrated in FigurgBere the value
of a increases from 4/20 (dotted line), to 10/20 (dddiee), and to 16/20 (solid
line). Fora equal to 4/20 or 16/20 there exists a mixed gysateéash equilibri-
um, while fora equal to 10/20 there does not exist such an éguiln.

Figure 3
1.0

0.5

—0.5k5

—1.0

Source:Own calculation.

Consider now each of the preference profiles (811, (16) and (17), and
assume that the value of the quorarmcreases. Assume also that for the pro-
files (16) and (17) there exists a mixed strategstNequilibrium for all the
values ofa being considered. In the Appendix, section 3, wav@ that an the
increase of the value efwill always increase the value of the Nash eqtitlim
mixed strategy*. This is illustrated on Figures 1la — 1d and 2&~The dashed
curves in these figures correspond to the highlelegaofa and give rise to higher
values ofp*, compared with the solid curves.

Finally, for the preference profiles (8) — (1136) and (17), we consider the
effect of an increase of the number of playemn the mixed strategy Nash equi-
librium. For the preference profiles (16) and (1@ probability that a player is
decisive becomes smaller msncreases. The conditiog(p,)>0 can then no

longer be satisfied. For the preference profil@s-(8L1) we prove in the Appendix,

% In this Figured, = dy, = 0.5, andl, = 2, andn = 20. The value od is 4/20 on the dotted line,
10/20 on the dashed line, and 16/20 on the sola li
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section 4, that the equilibrium mixed strategy tenad the quorunm whenn
tends to infinity. This is a remarkable and inté@resresult. Moreover, we also
show in the Appendix that in equilibrium the proligpthat the quorum is at-

: d ,
tained equals—"— . Note that for the preference profiles of clas® on
o

dm _q

We conclude this section with the following imgort remark. In this paper
we always referred to the game in which playershawdecide whether or not to
attend a meeting. This is an interesting gamesglfitand it allows us to consid-
er a wide variety of possible preferences of tlaygls. However, the underlying
game structure can also be used to analyze ditfeteategic situations. A situa-
tion which is related to attending a meeting océnrsase players are invited to
a seminar. Not all seminars promise to be intargstand other time intensive
tasks may be difficult to postpone. In the casa @eminar there is no formal
quorum, but a good seminar often requires the poesef a minimal number of
participants. Moreover, if there are only a smalmber of participants, this
could be rather embarrassing for the colleague iwited the speaker.

As already noted, a very different strategic situmoccurs in the game in
which players witness a crime and can report itht police. This is a simple
special case of the game we studied. Another istiege example is given in
Palfrey and Rosenthal (1983). These authors stughmae in which players can
contribute to the production of a public good. Thiglic good will be provided
if and only if a sufficient number of players deeitb make a contribution. Let
there ben players, and assume that at leasplayers have to make a contribu-
tion. Let a player's maximum willingness to pay flee public good be given by
v, and denote a player's contribution ©yAssume thatv>c>0. Also assume
there is no refund of a player's contribution ieecthe public good is not provided.
A player's payoffs can then be described by tHewahg scheme.

Regime | Regime I Regime IlI
C — v—C v—C
NC 0 0 v

Here C and NC stand for the two possible actions ,contributetlgmot
contribute®. If a player decides to contribute, shakes a loss ofcdin regime
I, and a gain of — c in regimes Il and lll. If a player does nontribute, noth-
ing happens in regimes | and Il, and she realizgsiraofv in regime lll. In this
gamed, =-c, d, =vu-c andd,, =—c. This is a preference profile on the bor-

derline between (16) and (17). Henceifis sufficiently large there exists
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a mixed strategy Nash equilibrium. Moreover, thebmation NC, NC, ...,NC)
is always a Nash equilibrium in pure strategiemahly, as in this game
d, =d, <0<d holds, the property illustrated in Figure 3 holHence, it is

possible that there exist mixed strategy Nash #xidl for small and for large
values ofa, but not for intermediate values @f This result certainly deserves
further investigation.

Concluding Remarks

The main results of this paper can be summarizgdlbws. We considered
a game in which players decide whether or not tendta meeting. If all the
players of the game prefer not to attend a meatihgn they know that the
qguorum cannot be attained, while they prefer terattwhen they know that the
guorum will be attained, there exist two stableepsirategy Nash equilibria: one
in which all players attend, and one in which naypl attends. For two types of
preferences there exists a stable mixed strategh Mquilibrium. First, players
may hate meetings so much that they do not waattémd, even when they are
sure the quorum will be attained. At the same timken the quorum is not
attained, they may want to attend the meeting.rTnetivation could be that by
attending the meeting they alleviate the resultingniliation of the chairman.
Alternatively, they may maliciously want to witnetsg chairman's humiliation.
For these preferences there exists a strictly msteategy Nash equilibrium
which is the unique stable Nash equilibrium of ¢jfa@ne. Secondly, assume that
players do not want to attend the meeting, bothaise the quorum will be at-
tained and in case it will not be attained. It tmealy happen that players, when
they are decisive, want to attend the meeting kmcaloey would have strong
guilt feelings if, because of their absence, thergon would not be attained. In
this case there always exists a pure strategy Basitibrium in which no player
decides to attend. If the guilt feelings of theypls are sufficiently strong, there
also exists a stable mixed strategy Nash equiliforiu

We have shown that, in all the cases where théstse strictly mixed strategy
Nash equilibrium, the equilibrium probability otemding the meeting increases
if the quorum increases. Furthermore, if the numifeplayers becomes very
large, the equilibrium mixed strategy tends touakie of the quorum.

Various extensions of the model may be worth eramgi For example, it
may be interesting the consider games where pldyere heterogeneous pre-
ferences. Different groups of players may haveedgit preferences. It may
also be possible to study different applicationgh& same underlying game
structure.
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Appendix
1. General Behaviour of the Function ¢

We first derive how the behaviour of the functiprover the interva[o, ]]
depends on the relative valuesdpfd, anddy. To this end we first prove the
following lemma.

Lemma 1: For all values of p0(0, 1), and for all integers x1< x<n, the fol-
lowing equality holds

Z[n; 1)(1_7'0Jx_k(k—np+ p=(1-19 {n;lj (24)

k=0

Proof

The proof is by induction ox

(1) We first show that (24) holds fot=1. Starting with the LHS of (24) for
X=1 we have

(e

The last term is exactly the RHS of (24) for1.
(2) We now show that, if (24) holds for any intege 1< X< n-1, it must
also hold forx+1. The LHS of (24) forx+1 is given by

4 s

k=0

AR b oo
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As (24) holds fox, this can be written as

]'_Tp{(p—l) x(”;lj{”;lj(x— npt g}z
:(p—l)(x+1)[:;ﬂ

This last expression is the RHS of (24)xerl. Q.E.D.
For the following theorem it is useful to change notation for the function
¢, defined in (4), as follows. The functigncan be written as

¢(p)=d| L( p)+q| M( p)+ o} (1_ L( F)_ IV( [))

or as
#(p)=hL(p)+M(P+Hh (25)
where
b =d -d,
b, =d, - d, (26)
b, =d,

We now prove the following theorem.

Theorem 1: The functionp has at most one critical point in the interv(a), 1)

It is given by
p=— 278 27)
S -y,
an-1
provided
n-1
£ 28
h#T=b (28)
and
0<p :&<1 (29)
S -1y
an-1
Moreover, forp,0(0, 1),
#"(p,)<0 - b <"Lh andg"(p)>0- h>"Th  (30)
© an-1 ¢ an-—
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Proof
Let us introduce the notation

x*=an-1 (31)
Using (25), the first order derivative ¢f( p) can be written as

(n; 1) P (1= p) (k= npr P+

< bz(nx_clj(f -np+

Replacing the sum in the square brackets by th® 8H24) we obtain

¢'(p)=(nx_clJ p L 1- ) [-hX(1- B+ b( %- e P (@2)

The only possible value gd0(0, 1) solving the equatio’(p) =0 is given
by (27). Starting from (32), and usimtj( p,) =0, we also find that
n-1

o (p)=[ " (n a0 ¢ (-t

X

Property (32) then easily follows. Q.E.D.

We now consider all possible combinations of iraigies and signs dfy, b,.
Using (27) — (29), we can easily determine howgeeeral shape of the function
¢ depends on the parametdwsand b,. Using (26), each such combination of
inequalities and signs df, b, gives rise to a corresponding combination of ine-
qualities involvingd,, d, anddy,. This leads finally to the following conclusion.

b <b,<0< d <d < g :¢is monotonically increasing ov¢p, 1)

b <0<b, - d <d, <¢ and

0<b <b, = d, <d < ¢ : ¢ has a unique critical point at, J(0, 1)
which is a maximum,

b,<h<0< d <d<gdg and

b,<0<hb < d, <d, <d: ¢ has a unique critical point ap,(0, 1),
which is a minimum,

0<h,<h = d, <q < d:¢is monotonically decreasing ovfo, 1).
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On the basis of these properties we can condw@doehaviour of the function
¢ for all possible preference profiles. This is damsection 2 of the text.

2. The Existence of Mixed Strategy Nash Equilibria for Preference Profiles
(12) and (13)

Consider the special profile
dI = dIII <0< ql (33)

This is the borderline case between the first prafiles in (12) and (13). In
terms of the notation (26), (33) is equivalent to

b =0, b,>0, b,<0

From our previous analysis we know that the fiorctp(p)=b,M( p)+ b
has a critical point at
_an-1_ x-1
pe - - 4
n-1 n-1

where the function attains a maximum. This maxinuatue is given by

#(p.)=bM(p.)+h

M(p.)=M (;‘_:3 :[::ﬂ(;(_:ﬂl(%ﬂ

For any given value af, this maximum value is a function only »f We

where

denote this maximal value &8 (x) = M (;(—_ﬂ We now investigate the behav-

iour of M (x) as a function ok, x: 1, 2, ...,n. Clearly, the functionM is de-
creasing at the valueif M (x)> M (x+1).

It is easy to see that this inequality is equinate

(X_ljx—l ( n—l— Xjn—x—l
Z 2 >
X n— X

Using the transformatioy = n— X, this inequality can be written as

(HJH >( y‘ljy_l.y= n-x (34)

X X




594

Now consider the behaviour of the LHS of (34), ethiwe denote by
x-1
f (x) = (X—lj . For simplicity we assume thatis a continuous variable with
X
xD[l, oo) . The following lemma states some interesting pridge of the func-

tion f (x).

x-1
Lemma 2: The function f(x):(x—_lj has the following properties:
X
df ( x
f(1)=1, lim f(x):l and Ox0[1, «), ( )<o.
X #e0 e dx
Proof
In[x_lj
x-1
Writing f(x):(x—_lj =exp TX and applying L'Hospital's rule,
X
x-1
we obtain
x-1
In( j w1
o _ . X _ oo x=1 _ .
f(l)—xlllr};l>lf(x)—exp leml— —ex;{xﬁlllrgl — } exf 0=
x-1

In the same way we find

lim f (x) =exp{ lim —XT_l} =exp(-13 -1

X — +00 e

Asf is continuously differentiable in the inter\Ie]tT-'_oo) , we find that

oo e

X X

Define a functiong(x) as

We then have
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and
lim _g(x)=In(0)+1=
lim g(x)=In(1)+0=0 (36)

X — +00

Hence, the functiong(X) is negative and increasing for aid[1, +).
df (x)

From (35) it then foIIowsd—<O for all xD[l, +oo). Q.E.D.
X

Returning now to (34), it easily follows that

(x—l}x_1 -1\ n
_ < = X<—
X 2

=

x-1 y-1
[X_—lJ S L
X 2

Hence, the functioM (x) is U-shaped over the intervi, n] : it is decreas-

<

< <
| < |1 <
[N [N
>

<|

with y=n-Xx.

ing for all 1<x<n/2, and it is increasing for alh/2< x< n.This property is
summarized in the following theorem.

Theorem 2: For all preference profiles satisfyind, =d,, <0<, , the function

¢(p) attains a global maximum over the inter{@l 1 at the valuep, :n—_i.
X_

For any given value of n, this maximal valu}h( pe) is decreasing for all

1<x<n/2, and itis increasing for alh/2< x< n.

3. The Dependence of the Mixed Strategy Nash Equilibrium on the Size
of the Quorum

. . X X+1
We consider the effect of an increase:dfom a" == to a" === on the
n n

mixed strategy Nash equilibrium for the preferepogfiles (8) — (11) and (16) —
(17). For any value opr[O, ]] the two values ok give rise to two corre-

sponding functiong® ( p) and¢" (p), defined by
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¢ (p)=d 3 f()+d 1(x-D+ ¢, > 1()
o 37
0 (p)=d 3 1()+d 1(9+d 3 ()

where f (|) is the probability that players attend the meeting, given any value
of pD[O, ]] Using (7), the critical points of these functiare given by

(dl _dlll) (q| q )

PeL = n—1 (38)
(dl _dlll) ﬁ(q d )
and
Py = (d| —dy )n_(f - ¢ ) (39)
(dl M )_m(q d )

We use the notatiop_* and p, * to denote the two Nash equilibria corre-
sponding tax" anda". Thereforeg" (p_*)=0 and¢" (p, *)=0.
We define

Ag(p)=¢"(p)-¢"(P)=(d - d) f(+(d-¢) (x2)  (40)

Using the binomial density function, we know that
(3= f(x-12 n-1-(x=)

This allows us to write

A¢(p)= f(X—l)[(ql - d, )ﬁn_x-"(d_ Q)} (41)

Provided (d, - d, )¢—(q d, ). there is a unique value @f where
X

Ag(p) is zero. It is given by

(d -du)=(d ~d )
(d - d...)—%( a)

Hence, at the valug, the two functiongp* ( p) and¢" (p) cross each other.

r):
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We now want to determine the sign &% (p)=¢" (p)-¢"( p). We know
that in the preference profiles (9) and (I))—d, >0 andd, —d, >0. It then
follows from (40) thatg™ (p) >¢" ( p) for all pO(0, 1). See Figures 1a and 1b.
It is easy to show that in the preference prof{&s(11), (16) and (17), we have

0< Py <p<pu<l (42)

From (41) it follows that, for small values op((0, 1), the sign of
Ap(p)=¢" (p)-¢"(p) is given by the sign ofl, —d, .

All this leads to the following conclusions. Foreference profile (8),
0<p<1, andg" (p)>¢"(p) forall 0< p<p, while " (p)<g"(p) for all
p< p<l. As 0<p* <p, <P, we must havep' (p *)=0<¢" (p *), so
that p,*> p *. For preference profiles (9) and (10), we alre&dpw that
¢" (p)>¢"(p) for all pO(0, 1. It follows that p,*> p_*. For preference
profiles (11), (16) and (17)0< p<1, and ¢" (p)<¢"(p) for all 0< p< p,
while ¢" (p)>¢"(p) for all p<p<l. As p<p, < p,*<1l, we must have
¢"(p*y)<¢" (p*,)=0,sothatp,*>p*.

All these properties are illustrated in Figurearid 2. All these results are
summarized in the following theorem.

Theorem 3: For all preference profiles (8) — (11) an increagkthe quorum
always increases the equilibrium mixed strategy Pphe same is true for
the preference profiles (16) — (17), provided thexkests a mixed strategy Nash
equilibrium.

4. The Dependence of the Mixed Strategy Nash Equilibrium on the Number
of Players

nklj p“(1- p)""" can be

approximated by the normal distribution with meén—l)p and variance

For large values ofi the binomial distributior{

(n-1) p(1- p). It follows that for large values of the following approxima-
tions apply L(p)=C(ksan-2), M(p)=0, and R( p)=1-C(ksa n-2),
whereC is the cumulative distribution function of the n@l distribution, and
whereL(p), M (p) andR( p) are as given in (1), (2), (3), respectively. Defin
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now k =

, and write C(k<san-2) as C(Esl). C is the cumulative

(n-1)p

an-2

an-2

distribution function of the normal distribution thimean and variance

(n-1) p(1- p)
(an-2)°
approximated by

. Hence, for large values af, the equation¢(p)=0 can be

d,C(k<1)+d, [1— o(ksl)]z 0

dm _q

™

(k<1)= (43)

Note that for preference profiles in class dmddﬁ <l
mo

As n tends to infinity, the mean & approachesp/a, and its variance ap-

proaches zero. Therefore, the functi@nexhibits an almost discrete jump from

0 to 1 in the interva(g—e, Ep+€j for any small value o >0. It then fol-

lows thatp— =1, or that p* =a . From (43) it also follows that the probability
a

that the quorum is attained in equilibrium equmgL. The following theo-
mo

rem summarizes all these results.

Theorem 4. If the number of players becomes very large, tf@npreference
profiles of class one, the equilibrium mixed stggt@* tends to the value of the
quoruma. Moreover, the probability that the quorum is at&d in the equilibrium

equalsL

dy —d .



