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Attending Meetings: The Use of Mixed Strategies1 
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Abstract  
 
 We consider a game in which each of n players is invited to a meeting, and 
has to decide whether or not to attend the meeting. A quorum has to be attained 
if the meeting is to have the power of making binding decisions. We consider all 
possible preferences of the players. These preferences are assumed to be the 
same for all players. Restricting ourselves to symmetric Nash equilibria, we 
identify three different classes of preferences. In a first class the game has 
a unique Nash equilibrium, defined in mixed strategies. In a second class the 
game has two Nash equilibria, defined in pure strategies. In a final class of pref-
erences the game has a Nash equilibrium in pure strategies, and possibly also in 
mixed strategies. If there is a mixed strategy Nash equilibrium, we show that the 
equilibrium probability of attending the meeting increases when the quorum 
increases. Furthermore, if the number of players becomes very large, this equi-
librium probability tends to the value of the quorum. Finally, we show how the 
underlying game structure can also be used in other applications. 
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Introduction 
 
 Suppose you are invited to a meeting the agenda of which does not particular-
ly interest you. Your decision to attend or not to attend the meeting may then be 
rather difficult. On the one hand, you may not want to lose your time preparing 
and attending a meeting in which you are not interested. But on the other hand, 
by not attending the meeting you may disappoint the chairman of the meeting. 
She may show you her disapproval, or she may even give you a warning. More-
over, if a meeting can only make binding decisions if a quorum is attained, you 
may feel guilty when, because of your absence, this quorum was not attained. 
The upshot of all these considerations could be that you decide to follow a mixed 
strategy, assigning positive probabilities to the actions „attending“ and „not 
attending“ the meeting. 
 In this paper we formalize the above situation as a game, and we study the 
use of mixed strategies in this game. In particular, we want to know which types 
of preferences give rise to an equilibrium mixed strategy. Furthermore, we want 
to analyze how the equilibrium mixed strategy depends on the exact value of the 
quorum and on the number of members of the meeting. 
 The main results of the paper are as follows. First, we identify three classes 
of preferences, each class having its own type of equilibrium. For preferences 
belonging to a first class, the game has a unique Nash equilibrium, defined 
in mixed strategies. For preferences belonging to a second class, there are two 
Nash equilibria, defined in pure strategies. Finally, in a third class of prefer-
ences, there always exists a Nash equilibrium in pure strategies, and possibly 
also a Nash equilibrium in mixed strategies. Secondly, we show that, in all 
classes of preferences with a mixed strategy Nash equilibrium, an increase of 
the quorum always leads to an increase in the equilibrium probability of atten-
ding the meeting. Furthermore, if the number of players becomes very large, 
then – for all preferences of the first class – the equilibrium probability of 
attending the meeting converges to the quorum, expressed as a fraction of the 
number of players. Finally, we show that there are interesting game situations, 
different from our „meeting game“, that can be analyzed using the underlying 
game structure of our model. One example refers to the well-known game in 
which players witness a crime and can report it to the police (see, e.g., Osborne, 
2004). Other examples are the public good games analyzed by Palfrey and 
Rosenthal (1983). 
 The paper is structured as follows. In a first section we present the model. In 
a second section we derive and analyze equilibrium mixed strategies. A final 
section concludes. In an Appendix we prove some more technical results, used 
in section 2. 
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The model 
 
 We consider the following normal form game. The players of the game are 
the members of a board who are invited to a meeting. We denote the set of play-
ers by { }1,  2,  ...,  N n= . The quorum of the meeting is denoted by αn, meaning 

that at least αn members have to attend if the meeting is to have the power to 
make binding decisions. α is a fraction which can be written as  = x nα , with 

1,  2,  ...,  x n= . Clearly, 1     1n α≤ ≤ . 

 Each player in the game has two possible actions: she can attend or not attend 
the meeting. These two actions are denoted by A and NA. A mixed strategy is 
defined by a probability p, [ ]0,  1p∈  assigned to the action A. The probability 

that the action NA is chosen is 1 p− . We define a strictly mixed strategy as 

a mixed strategy p with ( )0,  1p∈ . Note that the chairman of a meeting is not 

a player of the game. As she has to attend the meeting, she cannot choose be-
tween the actions A and NA. 
 An individual player i N∈ , taking the actions chosen by the other players as 
given, can find herself in three different regimes. Regime I applies when the 
number of players, different from player i, having decided to attend the meeting 
is smaller than   1nα − . In this regime the meeting will never attain its quorum, 
even when player i decides to attend. Clearly, in the extreme case when  = 1 nα , 

regime I cannot occur. In this case, even if all the other   1n −  players decide not 
to attend, the quorum is attained if the player we are considering decides to attend. 
Regime II applies when exactly   1nα −  of the players, different from player i, 
have decided to attend. In this case player i is decisive, meaning that the quorum 
is attained if and only if player i decides to attend. Finally, in regime III, at least 
αn players, different from player i, have decided to attend the meeting. In this 
regime the quorum is attained, even when player i decides not to attend. In the 
extreme case when  = 1α , regime III cannot occur. In this case, even if all the 
other   1n −  players decide to attend, the quorum is not attained if the player we 
are considering decides not to attend. 
 We assume all the players have the same preferences, so that the game is 
symmetric. A player's payoffs, given in terms of Bernoulli utility numbers,2 de-
pend on the action that player has chosen, and on the actions chosen by all the 
other players. These latter actions are given by the regime that applies. The nota-
tion used to indicate the payoffs of an individual player is given in the following 
scheme. When a player decides to attend the meeting, her payoffs in each of the 
three regimes are denoted by aI, aII and aIII . When she decides not to attend the 

                                                 
 2 We are using the terminology introduced by Mas-Colell, Whinston and Green (1995), p. 184. 
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meeting, these payoffs are denoted by nI, nII and nIII . As we noted before, in the 
extreme cases when  = 1 nα  or  = 1α  regime I or regime III does not occur. 
 
 Regime I Regime II Regime III 

A aI aII aIII  

NA nI nII nIII   
 At this point of the analysis, we do not impose any restrictions on these pay-  
-offs. In fact, each of these utility numbers can be given by any real number. In 
the next section we will derive restrictions on these payoffs which are necessary 
and/or sufficient for the existence and/or uniqueness of an equilibrium mixed 
strategy. 
 
 
Equilibrium Mixed Strategies 
 
 We now study symmetric mixed strategy Nash equilibria of the game defined 
in the previous section. We will first determine the types of preferences leading 
to mixed strategy Nash equilibria. We then examine how the parameters α and n 
affect the precise value of the equilibrium mixed strategy. 
 Consider an individual player i N∈ , and assume that all the other players 
choose the same mixed strategy given by p. The number of these players actually 
attending the meeting is then a random variable with a binomial distribution. If 
we assume that 1 1n α< < , so that the regimes I, II and III occur with positive 

probabilities, these probabilities are given by 
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 Clearly, if 1 nα = , regime I cannot occur, and the above probabilities simpli-

fy to ( ) 0L p =  , ( ) ( ) 1
1

n
M p p

−= −  and ( ) ( ) 1
1 1

n
R p p

−= − − . Similarly, if 1α = , 

regime III cannot occur, and the above probabilities simplify to ( ) 11 nL p p −= − , 

( ) 1nM p p −=  and ( ) 0R p = . We will analyze these two extreme cases later on. 

For the moment we assume that 1 1n α< < , so that the probabilities (1), (2) and 

(3) apply. 
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 The expected payoff of a player choosing action A, when all the other players 
choose a mixed strategy p, is given by 
 

( ) ( ) ( )I II IIIa L p a M p a R p+ +  
 
 If a player chooses action NA, her expected payoff is 
 

( ) ( ) ( )I II IIIn L p n M p n R p+ +  
 
 If we want a player to choose a mixed strategy, we require that these two 
expected payoffs be equal: 
 

( ) ( ) ( ) ( ) ( ) ( )I II III I II IIIa L p a M p a R p n L p n M p n R p+ + = + +  
 
 This is an application of the indifference principle (see, e.g., Maschler, Solan 
and Zamir, 2013, p. 160). To simplify the notation, we define the numbers 

I I Id a n= − , II II IId a n= −  and III III IIId a n= − , giving the difference in payoffs 

obtained from the actions A and NA, in each of the three regimes. We now define 
a function ( )pϕ  as 
 

( ) ( ) ( ) ( )I II IIIp d L p d M p d R pϕ = + +                            (4) 
 
 We want to find the values ( )* 0,  1p ∈  such that 
 

( )* 0pϕ =                                              (5) 
 
 Such a value of p* is a symmetric, strictly mixed strategy Nash equilibrium. 
Moreover, if at the value ( )* 0,  1p ∈  the function φ cuts the horizontal p-axis 

from above, the mixed strategy Nash equilibrium p* is locally stable. The moti-
vation for this stability property is as follows. If, at a mixed strategy p, close to 
a value p* where ( )* 0pϕ = , ( )pϕ  is negative, the expected payoff of choosing 

NA exceeds the expected payoff of choosing A, and the decision maker may be 
assumed to decrease the value of p. Similarly, if ( )pϕ  is positive, the decision 

maker may be assumed to increase the value of p. If then the function φ cuts the 
horizontal p-axis at p* from above, these adjustments will ultimately lead the 
decision maker to the value p* where ( )* 0pϕ = . 

 Clearly, the game can also have Nash equilibria in pure strategies, at values 
0p =  or 1p = . If 0p = , all the other players have chosen the action NA. If then 

( )0 0ϕ < , the best reply by an individual player is also to choose NA. Hence, the 

combination of actions (NA, NA, ..., NA) is a locally stable pure strategy Nash 
equilibrium. Similarly, if ( )1 0ϕ > , the combination (A, A, ..., A) is also a locally 

stable pure strategy Nash equilibrium. 
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We now identify the conditions guaranteeing that a value ( )* 0,  1p ∈  with proper-

ty (5) exists, and that this value is unique and stable. As we analyze the case 
when α satisfies 1 1n α< < , the probabilities (1), (2) and (3) apply. As in this 

case ( )0 1L = , ( )0 0M = , ( )0 0R = , ( )1 0L = , ( )1 0M =  and ( )1 1R = , we have 
 

( )0 Idϕ =                                              (6) 

( )1 IIIdϕ =  
 
 Hence, the function φ starts at the value ( )0 Idϕ =  and ends at the value 

( )1 IIIdϕ = .  

 We now determine the general behaviour of the function φ over the interval 

( )0,  1 . Is this function monotonically increasing or decreasing over this interval, 

or does it attain critical points in this interval? And what can we say about the 
number of these critical points, and about the nature of these critical points (maxi-
ma or minima)? In the Appendix, section 1, we prove that the general behaviour 
of the function φ is fully determined by the relative sizes of the differences dI, dII 
and dIII . In particular, for each of the following six sequences of inequalities, the 
function φ shows the indicated behaviour: 
 I II IIId d d< <  : φ is monotonically increasing over ( )0,  1   

 III II IId d d< < : φ is monotonically decreasing over ( )0,  1   

 I III IId d d< <  or III I IId d d< < : φ has a unique critical point ( )0,  1ep ∈ , 

which is a maximum 
 II I IIId d d< <  or II III Id d d< < : φ has a unique critical point ( )0,  1ep ∈ , 

which is a minimum 
 
 Moreover, the value pe at which the function φ has a critical point is given by 
 

( ) ( )
( ) ( )1

1

I III II III
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I III II III

d d d d
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d d d d
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− − −
= −− − −

−

                               (7) 

 
 For each of the above six sequences of inequalities we can fix the signs of the 
differences dI, dII and dIII. For example, for the first sequence I II IIId d d< <  we can 

consider the possibilities 0 I II IIId d d< < < , 0I II IIId d d< < < , 0I II IIId d d< < <  

and 0I II IIId d d< < < . We call such a signed sequence of inequalities a prefer-

ence profile. For each such preference profile we can now easily determine the 
nature of the Nash equilibrium (equilibria), if there exists one. We start with 
the following simple cases. If all the differences dI, dII and dIII  are negative, 
then clearly the combination of actions (NA, NA, ..., NA) is the unique pure 
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strategy Nash equilibrium. Similarly, when all the differences dI, dII and dIII  are 
positive, the combination (A, A, ..., A) is the unique pure strategy Nash equilib-
rium. More generally, as already noted, whenever ( )0 0Idϕ = < , the combina-

tion of actions (NA, NA, ... NA) is a pure strategy Nash equilibrium, and when-
ever ( )1 0IIIdϕ = > , the combination (A, A, ..., A) is also a pure strategy Nash 

equilibrium. 
 We now group all the other possible preference profiles into three main 
classes. A first class of preference profiles concerns preferences for which 
there always exists a stable, strictly mixed strategy Nash equilibrium which, in 
addition, is the unique Nash equilibrium of the game. These are the preference 
profiles 
 

0II III Id d d< < <               (8) 
 

0III II Id d d< < <               (9) 
 

0III II Id d d< < <             (10) 
 

0III I IId d d< < <             (11) 
 
 The common characteristic of all these profiles is that 0III Id d< < . Given 

these inequalities, the preference profiles in (8) – (11) consider all possible 
locations of dII, relative to dIII  and dI. In these preference profiles players basi-
cally dislike meetings. In particular, in regime III, when the attainment of the 
quorum is guaranteed, players do not want to attend the meeting: dIII  is always 
negative. At the same time, in regime I, dI is always positive, meaning that 
players prefer to attend the meeting even when that choice does not allow the 
quorum to be attained. This last characteristic may look strange for players 
who dislike meetings.  
 However, three possible interpretations are as follows. First, a meeting which 
does not attain its quorum can be very humiliating and embarrassing for the 
chairman, and players may want to alleviate the chairman's discomfort by attend-
ing the meeting. This would then also require dII to be positive. Secondly, play-
ers who dislike meetings still may want to attend a meeting in regime I only to 
witness and to enjoy (with malicious pleasure) the chairman's discomfort in that 
regime. This would be consistent with a negative value of dII. Finally, the ine-
qualities 0III Id d< <  may also characterize players who, for social reasons, like 

to be seen in the meeting, pretending they are concerned, but who are in fact 
unwilling to take any responsibility of the outcome. This may be a possible 
interpretation of the profiles (8) and (10). 
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F i g u r e  1a    F i g u r e  1b 

     

 
F i g u r e  1c     F i g u r e  1d 

     

Source: Own calculation. 

 
 The exact behaviour of the function φ in the four preference profiles (8) – 
(11) is as follows. As in all these profiles 0III Id d< < , the function φ starts at 

a positive value dI, and ends at a negative value dIII . In the case of (8) it attains 
a minimum in the interval ( )0,  1 . This is illustrated in Figure 1.a. In the cases 

(9) and (10) the function φ monotonically decreases from dI to dIII . Figure 1.b 
illustrates (9), and Figure 1.c illustrates (10). Finally, in case (11), illustrated in 
Figure 1.d, the function φ attains a maximum in the interval( )0,  1 . In all these 

cases there exists a unique, stable, strictly mixed strategy Nash equilibrium.3 
 A second class of preference profiles concerns preferences for which all sta-
ble Nash equilibria are pure strategy equilibria. These are profiles of the type 
 

0II I IIId d d< < <                (12) 
 

0I II IIId d d< < <                (13) 
 

0I II IIId d d< < <                (14) 
 

0I III IId d d< < <                (15) 
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3 In all these preference profiles the inequalities 0I IIId d< <  hold. Given these 

inequalities, the preference profiles in (12) – (15) differ only in the exact location 
of dII. In these profiles all possible locations of dII, relative to dI and dIII , are 
allowed. In all the profiles 0I IIId d< <  players can be said to be „serious“: in 

regime I they do not want to lose their time by attending the meeting, while in 
regime III, when real decisions are being taken, they want to be present. The sign 
of dII reveals whether a player prefers a meeting which attains the quorum and 
where she is present, or a meeting which does not attain the quorum and where 
she is not present. In cases (14) and (15) the player is „concerned“ and prefers 
the first alternative. She would have guilt feelings if she would not attend. No 
such guilt feelings exist in cases (12) and (13). 
 In all four cases of (12) – (15) there exists an unstable mixed strategy Nash 
equilibrium, where the function φ cuts the p-axis from below. At the same time, 
the combinations (A, A, ..., A) and (NA, NA, ..., NA) are always stable pure strat-
egy Nash equilibria. In the cases (13) and (14) the function φ monotonically 
increases from dI to dIII . In case (15) the function φ attains a maximum at the 
value ( )0,  1ep ∈ , while in case (12) it attains a minimum at ( )0,  1ep ∈ . 

 Finally, a third class of preference profiles concerns preferences where there 
is always a stable pure strategy Nash equilibrium. Moreover, it is also possible 
that there exists a stable mixed strategy Nash equilibrium. These are the prefer-
ence profiles of the type 
 

0I III IId d d< < <                (16) 
 

0III I IId d d< < <                (17) 
 

0II I IIId d d< < <                (18) 
 

0II III Id d d< < <                (19) 
 
 In all these preference profiles dI and dIII  always have the same sign. In the 
cases (16) and (17) this sign is negative, meaning that players strongly dislike 
meetings. At the same time, they have strong guilt feelings in regime II: if the 
quorum is not attained and if they are decisive, they would feel very guilty if 
they would not attend. In these two preference profiles the function φ attains 
a maximum at the value ( )0,  1ep ∈ . If the value dII is sufficiently large, and if 

the probability that regime II applies is also sufficiently large, the maximum 

                                                 
 3 The values of (dI,dII,dIII ) in each of the Figures 1a, 1b, 1c and 1d are given by (0.5, –2, –0.5), 
(0.5, –0.25, –0.5), (0.5, 0.25, –0.5) and (0.5, 2, –0.5). On the solid curves α = 16/20, and on the 
dashed curves α = 17/20. In all the figures n = 20. 
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value ( )epϕ  will be positive, so that there exist two values of p at which 

( ) 0pϕ = . These are two mixed strategy Nash equilibria, but only the higher 

value of p is a stable Nash equilibrium. Moreover, the combination of actions 
(NA, NA, ..., NA) is also a pure strategy Nash equilibrium. These cases are illus-
trated in Figures 2a and 2b.4 
 
F i g u r e  2a  F i g u r e  2b 

 

Source: Own calculation. 

 
 In the cases (18) and (19) both dI and dIII  are positive, and dII is negative. 
These preferences look rather eccentric: players prefer to attend in regimes I and 
III, but in regime II they prefer to boycott the meeting. For this reason we will 
not discuss these cases any further in the context of our meeting game. The 
mathematical properties of these cases are, however, easy to derive. The function 
φ attains a minimum at the value ( )0,  1ep ∈ . If the value ( ) 0epϕ < , there exist 

two mixed strategy Nash equilibria, but only the lower value of p is a stable 
Nash equilibrium. Moreover, the combination of actions (A, A,..., A) is also 
a pure strategy Nash equilibrium. 
 We still have to consider the possible extreme values of α, viz. 1 nα =  and 

1α = . In case 1 nα =  regime I cannot occur, and ( ) 0L p = , ( ) ( ) 1
1

n
M p p

−= −  

and ( ) ( ) 1
1 1

n
R p p

−= − − . It follows that 
 

( ) [ ]( ) 1
1

n

II III IIIp d d p dϕ −= − − +                         (20) 
 
 We now have ( )0 IIdϕ =  and ( )1 IIIdϕ = . This game has a unique, stable, 

strictly mixed strategy Nash equilibrium if and only if 0III IId d< < . It is given 

by 

                                                 
 4 The values of (dI, dII, dIII ) in each of the Figures 2a and 2b are given by (–0.5, 2, –0.25) and 
(–0.25, 2,–0.5). On the solid curves α = 16/20, and on the dashed curves α = 17/20. In both cases 
n = 20. 
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1

1

* 1
n

III

II III

d
p

d d

− −= −  − 
                               (21) 

 
 In the context of the game in which players have to decide whether or not to 
attend a meeting, the case where 1 nα =  looks very special. However, there is 

another well known game with exactly this structure. In this game n players ob-
serve a crime, and each player wants the police to be informed, but prefers that 
someone else make the phone call (see Osborne, 2004, pp. 131 – 134), and the 
many references given there. Each player has two actions C = Call, and NC = 
Not Call. Payoffs can be described by the following scheme: 
 

 Regime II Regime III 

C υ – c υ – c 

NC 0 υ 
 
υ is the utility each player enjoys when the police is informed, and c is the cost 
of making a phone call. It is natural to assume that 0cυ > > . Clearly, in this 
example the condition 0III IId d< <  is satisfied, and 
 

1

1
* 1

nc
p

υ
− = −  

 
           (22) 

 
is the unique, stable, strictly mixed strategy Nash equilibrium. 
 Finally, we consider the other extreme case 1α = , in which all players have 
to attend in order to attain the quorum. Here ( ) 11 nL p p −= − , ( ) 1nM p p −=  and 

( ) 0R p = , so that 
 

( ) ( ) 1n
II I Ip d d p dϕ −= − +        (23) 

 
 We now have ( )0 Idϕ =  and ( )1 IIdϕ = . There now exists a stable, strictly 

mixed strategy Nash equilibrium if and only if 0I IId d> > . In the context of our 

game such preferences are unreasonable. In the more reasonable case where 
0II Id d> > , the mixed strategy Nash equilibrium is unstable. The only stable 

Nash equilibria in this case are the pure strategy combinations (A, A, ..., A) and 
(NA, NA, ..., NA). 
 Let us now return to the case where 1 1n α< < . In each of the profiles (8) – 

(11), and possibly also in the profiles (16) and (17), the game has a stable, strictly 
mixed strategy Nash equilibrium. We now examine how in each of these six pro-
files the equilibrium mixed strategy changes if the quorum α increases. In the case 
of preference profiles (16) and (17) we first note the following rather unexpected 
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property. As we noted before, and as is clear from Figures 2a and 2b, a mixed 
strategy Nash equilibrium only exists if the maximal value ( )epϕ  exceeds zero. 

If this is not the case, no mixed strategy Nash equilibrium exists. In the Appen-
dix, section 2, we prove that, in case the preference profiles (16) and (17) satisfy 

0I III IId d d= < < , this maximal value ( )epϕ  is decreasing in α for 0 1 2α< < , 

and increasing in α for ( )1 2 1α< < . It then may happen that this maximal value 

exceeds zero for low and for high values of α, and that it does not exceed zero 
for intermediate values of α. Such a case is illustrated in Figure 3.5 Here the value 
of α increases from 4/20 (dotted line), to 10/20 (dashed line), and to 16/20 (solid 
line). For α equal to 4/20 or 16/20 there exists a mixed strategy Nash equilibri-
um, while for α equal to 10/20 there does not exist such an equilibrium. 
 
F i g u r e  3 

 

Source: Own calculation. 

 
 Consider now each of the preference profiles (8) – (11), (16) and (17), and 
assume that the value of the quorum α increases. Assume also that for the pro-
files (16) and (17) there exists a mixed strategy Nash equilibrium for all the 
values of α being considered. In the Appendix, section 3, we prove that an the 
increase of the value of α will always increase the value of the Nash equilibrium 
mixed strategy p*. This is illustrated on Figures 1a – 1d and 2a – 2b. The dashed 
curves in these figures correspond to the higher values of α and give rise to higher 
values of p*, compared with the solid curves. 
 Finally, for the preference profiles (8) – (11), (16) and (17), we consider the 
effect of an increase of the number of players n on the mixed strategy Nash equi-
librium. For the preference profiles (16) and (17) the probability that a player is 
decisive becomes smaller as n increases. The condition ( ) 0epϕ >  can then no 

longer be satisfied. For the preference profiles (8) – (11) we prove in the Appendix, 

                                                 
 5 In this Figure dI = dIII = –0.5, and dII = 2, and n = 20. The value of α is 4/20 on the dotted line, 
10/20 on the dashed line, and 16/20 on the solid line. 
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section 4, that the equilibrium mixed strategy tends to the quorum α when n 
tends to infinity. This is a remarkable and interesting result. Moreover, we also 
show in the Appendix that in equilibrium the probability that the quorum is at-

tained equals III

III I

d

d d−
. Note that for the preference profiles of class one 

0 1III

III I

d

d d
< <

−
. 

 We conclude this section with the following important remark. In this paper 
we always referred to the game in which players have to decide whether or not to 
attend a meeting. This is an interesting game in itself, and it allows us to consid-
er a wide variety of possible preferences of the players. However, the underlying 
game structure can also be used to analyze different strategic situations. A situa-
tion which is related to attending a meeting occurs in case players are invited to 
a seminar. Not all seminars promise to be interesting, and other time intensive 
tasks may be difficult to postpone. In the case of a seminar there is no formal 
quorum, but a good seminar often requires the presence of a minimal number of 
participants. Moreover, if there are only a small number of participants, this 
could be rather embarrassing for the colleague who invited the speaker. 
 As already noted, a very different strategic situation occurs in the game in 
which players witness a crime and can report it to the police. This is a simple 
special case of the game we studied. Another interesting example is given in 
Palfrey and Rosenthal (1983). These authors study a game in which players can 
contribute to the production of a public good. This public good will be provided 
if and only if a sufficient number of players decide to make a contribution. Let 
there be n players, and assume that at least αn players have to make a contribu-
tion. Let a player's maximum willingness to pay for the public good be given by 
υ, and denote a player's contribution by c. Assume that 0cυ > > . Also assume 
there is no refund of a player's contribution in case the public good is not provided. 
A player's payoffs can then be described by the following scheme. 
 

 Regime I Regime II Regime III 

C –c υ – c υ – c 

NC 0 0 υ 
 
 Here C and NC stand for the two possible actions „contribute“ and „not 
contribute“. If a player decides to contribute, she makes a loss of –c in regime 
I, and a gain of υ – c in regimes II and III. If a player does not contribute, noth-
ing happens in regimes I and II, and she realizes a gain of v in regime III. In this 
game Id c= − , IId cυ= −  and IIId c= − . This is a preference profile on the bor-

derline between (16) and (17). Hence, if υ is sufficiently large there exists 
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a mixed strategy Nash equilibrium. Moreover, the combination (NC, NC, ..., NC) 
is always a Nash equilibrium in pure strategies. Finally, as in this game 

0I III IId d d= < <  holds, the property illustrated in Figure 3 holds. Hence, it is 

possible that there exist mixed strategy Nash equilibria for small and for large 
values of α, but not for intermediate values of α. This result certainly deserves 
further investigation. 
 
 
Concluding Remarks 
 
 The main results of this paper can be summarized as follows. We considered 
a game in which players decide whether or not to attend a meeting. If all the 
players of the game prefer not to attend a meeting when they know that the 
quorum cannot be attained, while they prefer to attend when they know that the 
quorum will be attained, there exist two stable pure strategy Nash equilibria: one 
in which all players attend, and one in which no player attends. For two types of 
preferences there exists a stable mixed strategy Nash equilibrium. First, players 
may hate meetings so much that they do not want to attend, even when they are 
sure the quorum will be attained. At the same time, when the quorum is not 
attained, they may want to attend the meeting. Their motivation could be that by 
attending the meeting they alleviate the resulting humiliation of the chairman. 
Alternatively, they may maliciously want to witness the chairman's humiliation. 
For these preferences there exists a strictly mixed strategy Nash equilibrium 
which is the unique stable Nash equilibrium of the game. Secondly, assume that 
players do not want to attend the meeting, both in case the quorum will be at-
tained and in case it will not be attained. It then may happen that players, when 
they are decisive, want to attend the meeting because they would have strong 
guilt feelings if, because of their absence, the quorum would not be attained. In 
this case there always exists a pure strategy Nash equilibrium in which no player 
decides to attend. If the guilt feelings of the players are sufficiently strong, there 
also exists a stable mixed strategy Nash equilibrium. 
 We have shown that, in all the cases where there exists a strictly mixed strategy 
Nash equilibrium, the equilibrium probability of attending the meeting increases 
if the quorum increases. Furthermore, if the number of players becomes very 
large, the equilibrium mixed strategy tends to the value of the quorum. 
 Various extensions of the model may be worth examining. For example, it 
may be interesting the consider games where players have heterogeneous pre-
ferences. Different groups of players may have different preferences. It may 
also be possible to study different applications of the same underlying game 
structure. 
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A p p e n d i x  
 
1.  General Behaviour of the Function φ 
 
 We first derive how the behaviour of the function φ over the interval [ ]0,  1  

depends on the relative values of dI, dII and dIII . To this end we first prove the 
following lemma. 
 
Lemma 1: For all values of ( )0,  1p∈ , and for all integers x, 1 x n≤ ≤ , the fol-

lowing equality holds 
 

( ) ( )
1

0

1 11
1

x k
x

k

n np
k np p p x

k xp

−−

=

− −    − − + = −    
    

∑           (24) 

 
Proof 
 The proof is by induction on x: 
 (1) We first show that (24) holds for 1x = . Starting with the LHS of (24) for 

1x =  we have 
 

( ) ( ) ( )1 11 1
0 1 1 1

0 1

n np p
np p p n p

p p

− −      − −− + = − = −      
      

 

 
 The last term is exactly the RHS of (24) for 1x = . 
 (2) We now show that, if (24) holds for any integer x, 1 1x n≤ ≤ − , it must 
also hold for 1x+ . The LHS of (24) for 1x+  is given by 
 

( )

( ) ( )

1

0

1

0

1 1

1 11 1

x k
x

k

x k
x

k

n p
k np p

k p

n np p
k np p x np p

k xp p

+ −

=

−−

=

−    − − + =  
  

 − −    − −= − + + − +     
      

∑

∑
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 As (24) holds for x, this can be written as 
 

( ) ( )

( )( )

1 11
1

1
1 1

1

n np
p x x np p

x xp

n
p x

x

 − −   − − + − + =    
    

− 
= − +  + 

 

 
 This last expression is the RHS of (24) for1x+ . Q.E.D. 
 For the following theorem it is useful to change the notation for the function 
φ, defined in (4), as follows. The function φ can be written as 
 

( ) ( ) ( ) ( ) ( )( )1I II IIIp d L p d M p d L p M pϕ = + + − −  
 
or as 
 

( ) ( ) ( )1 2 3p b L p b M p bϕ = + +          (25) 
 
where 

1

2

3

I III

II III

III

b d d

b d d

b d

= −
= −
=

        (26) 

 
 We now prove the following theorem. 
 
Theorem 1: The function φ has at most one critical point in the interval ( )0,  1 . 

It is given by 
 

 1 2

1 2

1
1

e

b b
p

n
b b

nα

−= −−
−

       (27) 

 
provided 

 1 2

1

1

n
b b

nα
−≠
−

             (28) 

 
and 

 1 2

1 2

0 1
1
1

e

b b
p

n
b b

nα

−< = <−−
−

          (29) 

 
 Moreover, for ( )0,  1ep ∈ , 
 

( ) 1 2

1
'' 0

1e

n
p b b

n
ϕ

α
−< ⇔ <
−

 and ( ) 1 2

1
'' 0

1e

n
p b b

n
ϕ

α
−> ⇔ >
−

       (30) 
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Proof 
 Let us introduce the notation 
 

1cx nα= −         (31) 
 
 Using (25), the first order derivative of ( )pϕ  can be written as 
 

( ) ( )
( ) ( )

( )

1
21

1
0

2

1
1

' 1
1

 

cc

c
cc

x kk x

x
n xx

k c
c

n
p p k np p

k
p p p b

n
b x np p

x

ϕ

−−

−
− −−

=

 −  − − + +  
  = −

 − 
 + − + 
   

∑  

 
 Replacing the sum in the square brackets by the RHS of (24) we obtain 
 

( ) ( ) ( ) ( )21
1 2

1
' 1 1

cc n xx c c
c

n
p p p b x p b x np p

x
ϕ − −−− 

 = − − − + − +   
 

      (32) 

 
 The only possible value of ( )0,  1p∈  solving the equation ( )' 0pϕ =  is given 

by (27). Starting from (32), and using ( )' 0epϕ = , we also find that 
 

( ) ( ) ( )1 2

1 2

1 1
'' 1

c cx n x c
e e ec c

n n
p p p x b b

x x
ϕ − − −−  − = − −   

  
 

 
 Property (32) then easily follows. Q.E.D. 
 We now consider all possible combinations of inequalities and signs of b1, b2. 
Using (27) – (29), we can easily determine how the general shape of the function 
φ depends on the parameters b1 and b2. Using (26), each such combination of 
inequalities and signs of b1, b2 gives rise to a corresponding combination of ine-
qualities involving dI, dII and dIII . This leads finally to the following conclusion. 
 
 1 2 0 I II IIIb b d d d< < ⇔ < < : φ is monotonically increasing over ( )0,  1  
 
 1 20 I III IIb b d d d< < ⇔ < <  and 
 
 1 20 III I IIb b d d d< < ⇔ < < : φ has a unique critical point at ( )0,  1ep ∈   

which is a maximum, 
 
 2 1 0 II I IIIb b d d d< < ⇔ < <  and 
 
 2 10 II III Ib b d d d< < ⇔ < < : φ has a unique critical point at ( )0,  1ep ∈ , 

which is a minimum, 
 
 2 10 III II Ib b d d d< < ⇔ < < : φ is monotonically decreasing over ( )0,  1 . 
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 On the basis of these properties we can consider the behaviour of the function 
φ for all possible preference profiles. This is done in section 2 of the text. 
 

2.  The Existence of Mixed Strategy Nash Equilibria for Preference Profiles  
     (12) and (13) 
 
 Consider the special profile 
 

0I III IId d d= < <                                      (33) 
 
 This is the borderline case between the first two profiles in (12) and (13). In 
terms of the notation (26), (33) is equivalent to 
 

1 0b = , 2 0b > , 3 0b <  
 
 From our previous analysis we know that the function ( ) ( )2 3p b M p bϕ = +  

has a critical point at 
1 1

1 1e

n x
p

n n

α − −= =
− −

 

 
where the function attains a maximum. This maximum value is given by 
 

( ) ( )2 3e ep b M p bϕ = +  

where 

( )
111 1

11 1 1

x n x

e

xx x n x
M p M

nn n n

− −− − − −     = =       −− − −      
 

 
 For any given value of n, this maximum value is a function only of x. We 

denote this maximal value as ( ) 1

1

x
M x M

n

− =  − 
ɶ . We now investigate the behav-

iour of ( )M xɶ  as a function of x, x: 1, 2, ..., n. Clearly, the function Mɶ  is de-

creasing at the value x if ( ) ( )1M x M x> +ɶ ɶ . 
 
 It is easy to see that this inequality is equivalent to 
 

1 1
1 1

x n x
x n x

x n x

− − −− − −   >   −   
 

 
 Using the transformation y n x= − , this inequality can be written as 
 

1 1
1 1

,
x y

x y
y n x

x x

− −− −   > = −   
   

                        (34) 
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 Now consider the behaviour of the LHS of (34), which we denote by 

( )
1

1
x

x
f x

x

−− =  
 

. For simplicity we assume that x is a continuous variable with 

[ )1,  x∈ ∞ . The following lemma states some interesting properties of the func-

tion ( )f x . 

Lemma 2: The function ( )
1

1
x

x
f x

x

−− =  
 

 has the following properties: 

( )1 1f = , ( ) 1
lim
x

f x
e→+∞

=  and [ ) ( )
1,  ,  0

df x
x

dx
∀ ∈ ∞ < . 

 
Proof 

 Writing ( )
1

1
ln

1
exp

1
1

x
x

x x
f x

x
x

−
 − 

  −    = = 
  
 − 

 and applying L'Hospital's rule, 

we obtain 
 

( ) ( ) ( )
1, 1 1, 1 1, 1

1
ln

1
1 lim exp lim exp lim exp 0 1

1
1

x x x x x x

x
xx

f f x
x

x

→ > → > → >

 − 
   −   = = = − = =    

 − 

 

 
 In the same way we find 
 

( ) ( )1 1
lim exp lim exp 1
x x

x
f x

x e→+∞ →+∞

− = − = − = 
 

 

 

 As f is continuously differentiable in the interval [ )1,+∞
, we find that 

 
( ) ( ) 1 1

ln
df x x

f x
dx x x

 − = +  
  

            (35) 

 
 Define a function ( )g x  as 
 

( ) 1 1
ln

x
g x

x x

− = + 
 

 

 We then have 
 

( )
( )2

1

1

dg x

dx x x
=

−
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and 
 

( ) ( )
( ) ( )

1, 1
lim ln 0 1

lim ln 1 0 0

x x

x

g x

g x

→ >

→+∞

= + = −∞

= + =
        (36) 

 
 Hence, the function ( )g x  is negative and increasing for all [ )1,  x∈ + ∞ . 

From (35) it then follows 
( )

0
df x

dx
<  for all [ )1,  x∈ + ∞ . Q.E.D. 

 Returning now to (34), it easily follows that 
 

11

11

11

1 1

2

1 1

2

1 1

2

yx

yx

yx

x y n
x

x y

x y n
x

x y

x y n
x

x y

−−

−−

−−

 − −  < ⇔ <  
   

 − −  = ⇔ =  
   

 − −  > ⇔ >  
   

 

 
with y n x= − .  
 
 Hence, the function ( )M xɶ  is U-shaped over the interval [ ]1,  n : it is decreas-

ing for all 1 2x n< < , and it is increasing for all 2n x n< < .This property is 

summarized in the following theorem. 
 
Theorem 2: For all preference profiles satisfying 0I III IId d d= < < , the function 

( )pϕ  attains a global maximum over the interval [ ]0,  1  at the value 
1

1e

n
p

x

−=
−

. 

For any given value of n, this maximal value ( )epϕ  is decreasing for all 

1 2x n< < , and it is increasing for all 2n x n< < . 
 

3.  The Dependence of the Mixed Strategy Nash Equilibrium on the Size  
     of the Quorum 
 

 We consider the effect of an increase of α from L x

n
α =  to 

1H x

n
α +=  on the 

mixed strategy Nash equilibrium for the preference profiles (8) – (11) and (16) – 
(17). For any value of [ ]0,  1p∈ , the two values of α give rise to two corre-

sponding functions ( )L pϕ  and ( )H pϕ , defined by 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1

0

1 1

0 1

1
x n

L
I II III

i i x

x n
H

I II III
i i x

p d f i d f x d f i

p d f i d f x d f i

ϕ

ϕ

− −

= =

− −

= = +

= + − +

= + +

∑ ∑

∑ ∑
                     (37) 

 
where ( )f i  is the probability that i players attend the meeting, given any value 

of [ ]0,  1p∈ . Using (7), the critical points of these functions are given by 
 

( ) ( )
( ) ( )1

1

I III II III
eL

I III II IIIL

d d d d
p

n
d d d d

nα

− − −
= −− − −

−

                              (38) 

and 
 

( ) ( )
( ) ( )1

1

I III II III
eH

I III II IIIH

d d d d
p

n
d d d d

nα

− − −
= −− − −

−

                              (39) 

 
 We use the notation *Lp  and *Hp  to denote the two Nash equilibria corre-

sponding to αL and αH. Therefore ( )* 0L
Lpϕ =  and ( )* 0H

Hpϕ = . 

 We define 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1H L
II III I IIp p p d d f x d d f xϕ ϕ ϕ∆ = − = − + − −        (40) 

 
 Using the binomial density function, we know that  
 

( ) ( ) ( )1 1
1

1

n xp
f x f x

p x

− − −
= −

−
 

 
 This allows us to write 
 

( ) ( ) ( ) ( )1
1II III I II

p n x
p f x d d d d

p x
ϕ  −∆ = − − + − − 

          (41) 

 

 Provided ( ) ( )I II II III

n x
d d d d

x

−− ≠ − , there is a unique value of p where 

( )pϕ∆  is zero. It is given by  
 

( ) ( )
( ) ( )1

I III II III

I III II IIIL

d d d d
p

d d d d
α

− − −
=

− − −
ɶ  

 
 Hence, at the valuepɶ , the two functions ( )L pϕ  and ( )H pϕ  cross each other. 
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 We now want to determine the sign of ( ) ( ) ( )H Lp p pϕ ϕ ϕ∆ = − . We know 

that in the preference profiles (9) and (10) 0II IIId d− >  and 0I IId d− > . It then 

follows from (40) that ( ) ( )H Lp pϕ ϕ>  for all ( )0,  1p∈ . See Figures 1a and 1b. 

It is easy to show that in the preference profiles (8), (11), (16) and (17), we have 
 

0 1eL eHp p p< < < <ɶ     (42) 
 
 From (41) it follows that, for small values of ( )0,  1p∈ , the sign of 

( ) ( ) ( )H Lp p pϕ ϕ ϕ∆ = −  is given by the sign of I IId d− . 

 All this leads to the following conclusions. For preference profile (8), 
0 1p< <ɶ , and ( ) ( )H Lp pϕ ϕ>  for all 0 p p< < ɶ , while ( ) ( )H Lp pϕ ϕ<  for all 

1p p< <ɶ . As 0 *L eLp p p< < < ɶ , we must have ( ) ( )* 0 *L H
L Lp pϕ ϕ= < , so 

that * *H Lp p> . For preference profiles (9) and (10), we already know that 

( ) ( )H Lp pϕ ϕ>  for all ( )0,  1p∈ . It follows that * *H Lp p> . For preference 

profiles (11), (16) and (17), 0 1p< <ɶ , and ( ) ( )H Lp pϕ ϕ<  for all 0 p p< < ɶ , 

while ( ) ( )H Lp pϕ ϕ>  for all 1p p< <ɶ . As * 1eH Hp p p< < <ɶ , we must have 

( ) ( )* * 0L H
H Hp pϕ ϕ< = , so that * *H Lp p> .  

 All these properties are illustrated in Figures 1 and 2. All these results are 
summarized in the following theorem. 
 
Theorem 3: For all preference profiles (8) – (11) an increase of the quorum 
always increases the equilibrium mixed strategy p*. The same is true for 
the preference profiles (16) – (17), provided there exists a mixed strategy Nash 
equilibrium.  
 

4.  The Dependence of the Mixed Strategy Nash Equilibrium on the Number  
     of Players 
 

 For large values of n the binomial distribution ( ) 11
1

n kkn
p p

k
− −− 

− 
 

 can be 

approximated by the normal distribution with mean ( )1n p−  and variance 

( ) ( )1 1n p p− − . It follows that for large values of n the following approxima-

tions apply ( ) ( )2L p C k nα= ≤ − , ( ) 0M p = , and ( ) ( )1 2R p C k nα= − ≤ − , 

where C is the cumulative distribution function of the normal distribution, and 
where ( )L p , ( )M p  and ( )R p  are as given in (1), (2), (3), respectively. Define 
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now 
2

k
k

nα
=

−
ɶ , and write ( )2C k nα≤ −  as ( )1C k ≤ɶɶ . C is the cumulative 

distribution function of the normal distribution with mean 
( )1

2

n p

nα
−

−
 and variance 

( ) ( )
( )2

1 1

2

n p p

nα
− −

−
. Hence, for large values of n, the equation ( ) 0pϕ =  can be 

approximated by 
 

( ) ( )1 1 1 0I IIId C k d C k ≤ + − ≤ =
 

ɶ ɶɶ ɶ  

or 

( )1 III

III I

d
C k

d d
≤ =

−
ɶɶ                                       (43) 

 

 Note that for preference profiles in class one 0 1III

III I

d

d d
< <

−
. 

 As n tends to infinity, the mean of k approaches p α , and its variance ap-

proaches zero. Therefore, the function Cɶ  exhibits an almost discrete jump from 

0 to 1 in the interval ,  
p pε ε
α α
 − + 
 

 for any small value of 0ε > . It then fol-

lows that 
*

1
p

α
= , or that *p α= . From (43) it also follows that the probability 

that the quorum is attained in equilibrium equals III

III I

d

d d−
. The following theo-

rem summarizes all these results. 
 
Theorem 4: If the number of players becomes very large, then, for preference 
profiles of class one, the equilibrium mixed strategy p* tends to the value of the 
quorum α. Moreover, the probability that the quorum is attained in the equilibrium 

equals III

III I

d

d d−
. 


